Recent results from Bonn-Gatchina partial wave analysis

A. Sarantsev

Petersburg Nuclear **Physics** Institute

HISKP (Bonn), PNPI (Russia)

MENU 2010

May 31-June 4 2010; Williamsburg

Bonn-Gatchina partial wave analysis group: A. Anisovich, E. Klempt, V. Nikonov, A. Srantsev, U. Thoma http://pwa.hiskp.uni-bonn.de/

Responsible: Dr. V. Nikonov, E-mail: <u>nikonov@hiskp.uni-bonn.de</u> Last changes: January 26th, 2010.

Problems in the baryon spectroscopy and/or quark model:

- 1. Problem: Number of predicted three quark states exceeds dramatically the number of discovered baryons.
- 2. Possible solution: Most of the information comes from analyses of πN elastic reactions. Photoproduction data taken by CLAS, GRAAL, LEPS and CB-ELSA can provide an important information about missing states.
 - (a) problem: Unambiguous analysis of photoproduction reactions can not be done without polarization information available.
 - (b) problem: Signals in simple reactions are expected to be mostly weak. Strong signals from new resonances can be found in multi-meson final states.
 - (c) Possible solution 1: Single polarization observables are measured now by almost all collaborations. Double polarization data are available from CLAS, GRAAL and, in nearest future, from CB-ELSA.
 - (d) **Possible solution 2**: A combined analysis of large data sets.

The latest analysis of SAID (GWU) of πN elastic data as well as $\gamma p \rightarrow \pi^0 p$ and $\gamma p \rightarrow \pi^+ n$ did not confirm the set of states observed in earlier analysis of πN elastic data. CLAS (M. Dugger et al.). Phys.Rev.C79:065206,2009.

State	PDG (Pole po	sition)(MeV)	Bonn-Gatchina PWA (MeV)		
	Mass	Width	Mass	Width	
$P_{11}(1710)^{***}$	1720 ± 50	230 ± 150	1710 ± 25	220 ± 20	
$P_{33}(1600)^{***}$	1550 ± 100	300 ± 100	1480 ± 40	230 ± 40	
$P_{33}(1920)^{***}$	1900 ± 50	200^{+100}_{-50}	1920 ± 50	330 ± 50	
$D_{13}(1720)^{***}$	1680 ± 50	100 ± 50	1730 ± 30	170 ± 35	
$P_{13}(1900)^*$	~ 1900	498 ± 78	1920 ± 30	200 ± 30	
$D_{33}(1940)^*$	~ 1940	200 - 500	1990 ± 40	350 ± 50	

Pion induced reactions (χ^2 analysis).

Observable	$N_{ m data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$\frac{N_{1/2^-}^* S_{11}(\pi N \rightarrow \pi N)}{N_{1/2^-}^* S_{11}(\pi N \rightarrow \pi N)}$	í) 104	1.81	SAID	$\Delta_{1/2^{-}} \mathrm{S}_{31}(\pi \mathrm{N} \!\rightarrow\! \pi \mathrm{N})$) 112	2.27	SAID
$N_{1/2^+}^{*'} P_{11}(\pi N \to \pi N)$	V) 112	2.49	SAID	$\Delta_{1/2^+} \mathrm{P}_{31}(\pi \mathrm{N} \rightarrow \pi \mathrm{N})$	í) 104	2.01	SAID
$N_{3/2^+}^{*'} P_{13}(\pi N \to \pi N)$	J) 112	1.90	SAID	$\Delta_{3/2^+}^* P_{33}(\pi N \rightarrow \pi N)$	í) 120	2.53	SAID
$\Delta_{3/2^{-}}^{*} D_{33}(\pi N \rightarrow \pi)$	N) 108	2.56	SAID	$\left \begin{array}{c} \mathbf{N}_{3/2^{-}}^{*} \mathbf{D}_{13}(\pi \mathbf{N} \rightarrow \pi \mathbf{N}) \right \\ \end{array} \right $	() 96	2.16	SAID
$N_{5/2^-}^{*'} D_{15}(\pi N \rightarrow \pi N)$	V) 96	3.37	SAID	$\Delta_{5/2^+}$ F ₃₅ ($\pi N \rightarrow \pi N$) 62	1.32	SAID
$\Delta_{7/2^+} \mathrm{F}_{37}(\pi \mathrm{N} \!\rightarrow\! \pi \mathrm{N})$	N) 72	2.86	SAID				
$d\sigma/d\Omega(\pi^-p\!\rightarrow\!n\eta)$	70	1.96	Richards et al.	$d\sigma/d\Omega(\pi^-p\!\rightarrow\!n\eta)$	84	2.67	CBALL
$d\sigma/d\Omega(\pi^-p\!\rightarrow\!K\Lambda)$	598	1.68	RAL	$P(\pi^- p \rightarrow K\Lambda)$	355	1.96	RAL+ANL
$d\sigma/d\Omega(\pi^+p\!\rightarrow\!K^+\Sigma$) 609	1.24	RAL	$P(\pi^+ p \to K^+ \Sigma)$	307	1.49	RAL
$d\sigma/d\Omega(\pi^-p \to K^0 \Sigma^0)$	⁾) 259	0.85	RAL	$P(\pi^- p \!\rightarrow\! K^0 \Sigma^0)$	95	1.25	RAL

π and η photoproduction reactions (χ^2 analysis).

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$\frac{\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\rightarrow\mathrm{p}\pi^0)}{\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\rightarrow\mathrm{p}\pi^0)}$	1106	1.34	CB-ELSA	$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0)$	861	1.46	GRAAL
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\mathrm{p}\pi^0)$	592	2.11	CLAS	$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0)$	1692	1.25	TAPS@MAMI
$E(\gamma \mathrm{p} \! \rightarrow \! \mathrm{p} \pi^0)$	140	1.23	A2-GDH	$\Sigma(\gamma \mathbf{p} \rightarrow \mathbf{p} \pi^0)$	1492	3.26	SAID db
$\mathrm{P}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0})$	607	3.23	SAID db	$T(\gamma p \rightarrow p \pi^0)$	389	3.71	SAID db
${ m H}(\gamma { m p}{ m m o}{ m p}\pi^0)$	71	1.26	SAID db	$G(\gamma p \rightarrow p \pi^0)$	75	1.50	SAID db
$O_x(\gamma p \rightarrow p \pi^0)$	7	1.77	SAID db	$O_z(\gamma p \rightarrow p \pi^0)$	7	0.46	SAID db
$d\sigma/d\Omega(\gamma p \rightarrow n\pi^+)$)1583	1.64	SAID db	$d\sigma/d\Omega(\gamma p \rightarrow n\pi^+)$) 408	0.62	A2-GDH
$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{n}\pi^+)$	899	3.48	SAID db	$E(\gamma \mathbf{p} \rightarrow \mathbf{n}\pi^+)$	231	1.55	A2-GDH
$P(\gamma p \rightarrow n\pi^+)$	252	2.90	SAID db	$T(\gamma p \rightarrow n\pi^+)$	661	3.21	SAID db
$H(\gamma p \rightarrow p\pi^+)$	71	3.90	SAID db	$G(\gamma p \rightarrow p\pi^+)$	86	5.64	SAID db
$d\sigma/d\Omega(\gamma p \rightarrow p\eta)$	680	1.47	CB-ELSA	$d\sigma/d\Omega(\gamma p \rightarrow p\eta)$	100	2.16	TAPS
$\Sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \eta)$	51	2.26	GRAAL 98	$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{p} \eta)$	100	2.02	GRAAL 07
$T(\gamma \mathbf{p} \rightarrow \mathbf{p}\eta)$	50	1.48	Phoenics				

Kaon photoproduction (χ^2 analysis).

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$C_x(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.23	CLAS	$C_x(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	94	2.20	CLAS
$C_z(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.41	CLAS	$C_z(\gamma \mathrm{p} \rightarrow \Sigma^0 \mathrm{K}^+)$	94	2.00	CLAS
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\Lambda\mathrm{K}^+)$	1320	0.81	CLAS09	$d\sigma/d\Omega(\gamma p \rightarrow \Sigma^0 K^+)$	⁻) 1280	2.06	CLAS
$P(\gamma p \rightarrow \Lambda K^+)$	1270	2.21	CLAS09	$P(\gamma p \rightarrow \Sigma^0 K^+)$	95	1.45	CLAS
$\Sigma(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	1.53	GRAAL	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	42	0.90	GRAAL
$\Sigma(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	45	1.65	LEP	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	45	1.11	LEP
$T(\gamma p \rightarrow \Lambda K^+)$	66	1.26	GRAAL 09	$d\sigma/d\Omega(\gamma p \rightarrow \Sigma^+ K^0)$	⁾) 48	3.76	CLAS
$O_x(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	1.30	GRAAL 09	$O_z(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	1.54	GRAAL 09
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\!\rightarrow\!\Sigma^+\mathrm{K}^0$) 72	0.74	CB-ELSA 10	$P(\gamma p \rightarrow \Sigma^+ K^0)$	24	1.06	CB-ELSA 10
$\Sigma(\gamma \mathrm{p} \rightarrow \Sigma^+ \mathrm{K}^0)$	15	1.13	CB-ELSA 10				

Multi-meson final states (maximum likelihood analysis).

$d\sigma/d\Omega(\pi^-p\!\rightarrow\!n\pi^0\pi^0)$	CBALL				
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}{ o}\mathrm{p}\pi^0\pi^0)$	CB-ELSA (1.4 GeV)	$\mathrm{E}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\pi^{0})$	16	1.91	MAMI
${ m d}\sigma/{ m d}\Omega(\gamma{ m p}{ m ightarrow}{ m p}\pi^{0}\eta$)	CB-ELSA (3.2 GeV)	$\Sigma(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\eta)$	180	2.37	GRAAL
$\mathrm{d}\sigma/\mathrm{d}\Omega(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\pi^{0})$	CB-ELSA (3.2 GeV)	$\Sigma(\gamma p \rightarrow p \pi^0 \pi^0)$	128	0.96	GRAAL
$d\sigma/d\Omega(\gamma p \rightarrow p\pi^0 \eta)$	CB-ELSA (3.2 GeV)	$\Sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \pi^0 \eta)$	180	2.37	GRAAL
$\mathrm{I_c}(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\pi^0\eta)$	CB-ELSA (3.2 GeV)	${ m I_s}(\gamma { m p}\! ightarrow\!{ m p}\pi^0\eta)$	CB	-ELSA (3	3.2 GeV)

Energy dependent approach

In many cases an unambiguous partial wave decomposition at fixed energies is impossible. Then the energy and angular parts should be analyzed together:

$$A(s,t) = \sum_{\beta\beta' n} A_n^{\beta\beta'}(s) Q_{\mu_1...\mu_n}^{(\beta)+} F_{\nu_1...\nu_n}^{\mu_1...\mu_n} Q_{\nu_1...\nu_n}^{(\beta')}$$

- 1. C. Zemach, Phys. Rev. 140, B97 (1965); 140, B109 (1965).
- 2. S.U.Chung, Phys. Rev. D 57, 431 (1998).
- 3. A.V. Anisovich et al. J. Phys. G 28 15 (2002)

V. V. Anisovich, M. A. Matveev, V. A. Nikonov, J. Nyiri and A. V. Sarantsev, Hackensack, USA: World Scientific (2008) 580 p

- 1. Correlations between angular part and energy part are under control.
- 2. Unitarity and analyticity can be introduced from the beginning.
- 3. However, to fix simultaneously energy and angular dependencies of the amplitude a combined fit of many reactions is needed.

Combined analysis of pion- and photo-production data:

For pion induced reactions:

$$A_{1i} = K_{1j} (I - i\rho K)_{ji}^{-1}$$

and

$$K_{ij} = \sum_{\alpha} \frac{g_i^{\alpha} g_j^{\alpha}}{M_{\alpha}^2 - s} + f_{ij}(s) \qquad \qquad f_{ij} = \frac{f_{ij}^{(1)} + f_{ij}^{(2)} \sqrt{s}}{s - s_0^{ij}}$$

where f_{ij} is nonresonant transition part.

For the photoproduction:

$$A_k = P_j (I - i\rho K)_{jk}^{-1}$$

The vector of the initial interaction has the form:

$$P_j = \sum_{\alpha} \frac{\Lambda^{\alpha} g_j^{\alpha}}{M_{\alpha}^2 - s} + F_j(s)$$

Here F_j is nonresonant production of the final state j.

Bonn-Gatchina partial wave analysis

- 1. K-matrix: $\pi N \to \pi N$, $\pi N \to \eta N$, $\pi N \to K\Lambda$ and $\pi N \to K\Sigma$ reactions. Included channels: πN , ηN , $K\Lambda$, $K\Sigma$, $\pi \Delta(1232)$, $N\sigma$, $N\rho$. First results for the S_{11} wave fitted in the N/D approach.
- 2. P-vector: $\gamma N \to \pi N$, $\gamma N \to \eta N$, $\gamma N \to K\Lambda$ and $\gamma N \to K\Sigma$ reactions. Preliminary fit with Reggee exchanges included in the *P*-vectors.
- 3. D-vector: $\pi N \to \pi \pi N$
- 4. PD-approach $\gamma N \to \pi \pi N$, $\gamma N \to \pi \eta N$

D-vector channels: $P_{11}(1440)\pi$, $D_{13}(1520)\pi$, $F_{15}(1675)\pi$, $f_2(1275)N$, $\Delta\eta$,...

Fit of the SAID energy fixed solution for πN elastic partial waves

The fit of the the $\pi^- p \to K \Lambda$ reaction

The $P_{11}(1710)$ and $P_{13}(1900)$ states

The fit of the the $\pi^- p \to K \Lambda$ reaction

The fit of the the $\pi^+p \to K^+\Sigma^+$ reaction

The fit of the the $\pi^-p \to K^0 \Sigma^0$ reaction

The fit of the $\pi^-p \to \eta n$ reaction

Description of all fitted single meson photoproduction observables as well as multipoles can be downloaded in numerical form or as PDF figures from

PWA.HISKP.UNI-BONN.DE

The $\gamma p \rightarrow K \Lambda$ reaction (CLAS 2009)

In the first solution the new S_{11} state with mass 1890 ± 10 MeV and width 90 ± 10 MeV is introduced in the fit.

The fit of the $\gamma p \to K \Lambda$ differential cross section

The fit of the $\gamma p \to K \Lambda$ recoil asymmetry (CLAS 2009)

The O_x , O_z and T observables from the $\gamma p \to K\Lambda$ reaction (GRAAL)

Left panel : contributions from $\Delta(1232)\eta$ (dashed), $S_{11}(1535)\pi$ (dashed-dotted) and $N a_0(980)$ final states.

Right panel: D_{33} partial wave (dashed), P_{33} partial wave (dashed-dotted), $D_{33} \rightarrow \Delta(1232)\eta$ (dotted) and $D_{33} \rightarrow N a_0(980)$ (wide dotted).

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_0 \left\{1 + \delta_l [I^s \sin(2\phi) + I^c \cos(2\phi)]\right\},\tag{1}$$

$$\Sigma = \int_{0}^{2\pi} I^c d\phi^*$$

Search for the pole position in the complex plane

 P_{33} wave (4 pole 6 channel K-matrix)

P_{11} wave: 4 pole 6 channel K-matrix (πN , ηN , $K\Lambda$, $K\Sigma$, $\pi\Delta(1232)$, $N\sigma$. Solution 1.)

Re D=0 Im D=0

T-matrix poles: M = 1370 - i100 MeV; M = 1695 - i105 MeV M = 1860 - i60 MeV

P_{13} : 3-pole 8-channel K-matrix (πN, ηN, KΛ, KΣ, πΔ(1232)(P,F),Nσ, $D_{13}(1520)$ π)

Re D=0Im D=0I sheet: closest to the
physical region below $D_{13}(1520)\pi$ threshold.M = 1730 - i230 MeV;

Il sheet: closest to the physical region above $D_{13}(1520)\pi$ threshold. $M=1500-i125~{\rm MeV}$ $M=1900-i100~{\rm MeV}$ $M=1980-i140~{\rm MeV}$

Tabelle 1: Pole position (in MeV), πN , ηN , $K\Lambda$ and $K\Sigma$ couplings (in GeV) and photocouplings (in GeV^{-1/2}10³).

State	$P_{11}(1440)$	$P_{11}(1710)$
Re(pole)	$1375 {\pm} 6$ ($1365 {\pm} 15$)	1690^{+25}_{-10} (1720 ±50)
-2lm(pole)	$200{\pm}10$ ($190{\pm}30$)	230^{+30}_{-20} ($230{\pm}150$)
$g(\pi N)$	$0.49 {\pm} 0.03$ /- $40 {\pm} 6^{o}$	0.16 ± 0.06 /- $(5^{+20}_{-50})^{o}$
$g(\eta N)$	- 0.12 ± 0.05 / 20 ± 10^{o}	- 0.16 ± 0.05 /- 20 ± 25^{o}
$g(K\Lambda)$		$0.70 {\pm} 0.20$ /- $8 {\pm} 10^{o}$
$g(K\Sigma)$		0.10 ± 0.05 / $(60^{+60}_{-30})^{o}$
$A^{1/2}(\gamma p)$	-44 ± 10 /-37° $\pm 10^{o}$	-65 ± 25 / $-65^{o} \pm 20^{o}$
State	$P_{11}(1840)$	$P_{10}(1720)$
Otate	$I \prod (1040)$	113(1120)
Re(pole)	1860 ± 10 ()	$\frac{113(1720)}{1720\pm50 (1675\pm15)}$
Re(pole) -2lm(pole)	$\frac{1860 \pm 10}{110^{+30}_{-10}}$	$\begin{array}{r} 13(1720) \\ 1720 \pm 50 \ \textbf{(}1675 \pm 15\textbf{)} \\ 420 \pm 80 \ \textbf{(}190 \pm 85\textbf{)} \end{array}$
Re(pole) -2Im(pole) $g(\pi N)$	$\frac{1860 \pm 10 ()}{110^{+30}_{-10} ()}$ 0.12±0.04/(15 ⁺¹⁵ ₋₂₅)°	$\begin{array}{r} 13(1720) \\ 1720 \pm 50 (1675 \pm 15) \\ 420 \pm 80 (190 \pm 85) \\ 0.78 \pm 0.12 / 35 \pm 10^{\circ} \end{array}$
OtateRe(pole)-2Im(pole) $g(\pi N)$ $g(\eta N)$	$\frac{1860\pm10()}{110^{+30}_{-10}()}$ $0.12\pm0.04/(15^{+15}_{-25})^{o}$ $-0.46\pm0.10/25\pm12^{o}$	$\begin{array}{r} 13(1720) \\ 1720 \pm 50 (1675 \pm 15) \\ 420 \pm 80 (190 \pm 85) \\ 0.78 \pm 0.12 / 35 \pm 10^{o} \\ 0.75 \pm 0.15 / 15 \pm 10^{o} \end{array}$
OtateRe(pole)-2lm(pole) $g(\pi N)$ $g(\eta N)$ $g(K\Lambda)$	$\frac{1860 \pm 10 \text{ ()}}{110_{-10}^{+30} \text{ ()}}$ $0.12 \pm 0.04 \text{ / } (15_{-25}^{+15})^{o}$ $-0.46 \pm 0.10 \text{ / } 25 \pm 12^{o}$ $-(0.07_{-0.05}^{+0.10}) \text{ / } 0_{-22}^{+12 o}$	$\begin{array}{r} 1720 \pm 50 \ (1675 \pm 15) \\ 420 \pm 80 \ (190 \pm 85) \\ 0.78 \pm 0.12 \ \textbf{/-}35 \pm 10^{o} \\ 0.75 \pm 0.15 \ \textbf{/-}15 \pm 10^{o} \\ 0.60 \pm 0.35 \ \textbf{/-}15 \pm 20^{o} \end{array}$
OtateRe(pole) $-2lm(pole)$ $g(\pi N)$ $g(\eta N)$ $g(K\Lambda)$ $g(K\Delta)$	$\frac{1860 \pm 10 ()}{110_{-10}^{+30} ()}$ $0.12 \pm 0.04 / (15_{-25}^{+15})^{o}$ $-0.46 \pm 0.10 / 25 \pm 12^{o}$ $-(0.07_{-0.05}^{+0.10}) / 0_{-22}^{+12 o}$ $0.30 \pm 0.10 / 40_{-30}^{+60 o}$	$\begin{array}{r} 1720 \pm 50 \ (1675 \pm 15) \\ 420 \pm 80 \ (190 \pm 85) \\ 0.78 \pm 0.12 \ \textbf{/} \cdot 35 \pm 10^{o} \\ 0.75 \pm 0.15 \ \textbf{/} \cdot 15 \pm 10^{o} \\ 0.60 \pm 0.35 \ \textbf{/} \cdot 15 \pm 20^{o} \\ 1.15 \pm 0.60 \ \textbf{/} \cdot 10 \pm 10^{o} \end{array}$
Re(pole) -2lm(pole) $g(\pi N)$ $g(\eta N)$ $g(K\Lambda)$ $g(K\Sigma)$ $A^{1/2}(\gamma p)$	$\frac{1860\pm10()}{110_{-10}^{+30}()}$ $0.12\pm0.04/(15_{-25}^{+15})^{o}$ $-0.46\pm0.10/25\pm12^{o}$ $-(0.07_{-0.05}^{+0.10})/0_{-22}^{+12}$ $0.30\pm0.10/40_{-30}^{+60}$ $-14\pm6/50^{o}\pm50^{0}$	$\begin{array}{r} 1720 \pm 50 \ (1675 \pm 15) \\ 420 \pm 80 \ (190 \pm 85) \\ 0.78 \pm 0.12 \ \textbf{/} \cdot 35 \pm 10^{o} \\ 0.75 \pm 0.15 \ \textbf{/} \cdot 15 \pm 10^{o} \\ 0.60 \pm 0.35 \ \textbf{/} \cdot 15 \pm 20^{o} \\ 1.15 \pm 0.60 \ \textbf{/} \cdot 10 \pm 10^{o} \\ 160 \pm 30 \ \textbf{/} \cdot 25^{o} \pm 35^{o} \end{array}$

Tabelle 2: Pole position (in MeV), πN , ηN , $K\Lambda$ and $K\Sigma$ couplings (in GeV) and photocouplings (in GeV^{-1/2}10³).

State	$P_{13}(1960)$	$P_{13}(1900)$
Re(pole)	$1970\!\pm\!12$ (\sim 1900)	$1890{\pm}50$ ()
-2lm(pole)	$300{\pm}60$ ()	270^{+200}_{-100} ()
$g(\pi N)$	$0.13 {\pm} 0.20$ / $20 {\pm} 50^o$	0.15 ± 0.10 / (20^{+50}_{-100})
$g(\eta N)$	- 0.70 ± 0.20 / 5 ± 15^{o}	$-(0.40^{+0.40}_{-0.30}) - (5^{+70}_{-50})^{-6}$
$g(K\Lambda)$	$-(1.10^{+0.50}_{-0.30})/0\pm15^{o}$	-0.70 ± 0.35 / $(5^{+70}_{-35})^{\circ}$
$g(K\Sigma)$	-0.40 ± 0.15 / $(35^{+15}_{30})^{o}$	$0.40^{+0.50}_{-0.25}$ /- (5^{+40}_{-100})
$A^{1/2}(\gamma p)$	9 ± 7 /- 2 ± 10^{o}	$63 \pm 20/65^{o} \pm 20^{o}$
$A^{3/2}(\gamma p)$	50 ± 40 / $55^{o} \pm 40^{o}$	63 ± 15 / $80^{o} \pm 30^{o}$
State	$P_{33}(1600)$	$P_{33}(1920)$
Re(pole)	$1480{\pm}40~(1550{\pm}100)$	$1925{\pm}40~(1900{\pm}50)$
-2lm(pole)	$230{\pm}40$ ($300{\pm}100$)	$320{\pm}50$ ($300{\pm}100$)
$g(\pi N)$	$0.40 {\pm} 0.10$ / $85 {\pm} 15^{o}$	0.45 ± 0.15 /- $30 \pm 25^{\circ}$
$g(K\Sigma)$	- 0.15 ± 0.08 /- 15 ± 15^{o}	-0.20 ± 0.10 / $20\pm15^{\circ}$
$A^{1/2}(\gamma p)$	20 ± 12 / $55^{o} \pm 20^{o}$	100 ± 20 /- $55^{o} \pm 15^{o}$
$A^{3/2}(\gamma p)$	14 ± 10 /- $5^{o} \pm 20^{o}$	-73 $\pm 12/35^{o}\pm 15^{o}$

Summary

- 1. Analysis of the $\pi^- p \to K^0 \Lambda$ reaction confirms firmly the $P_{11}(1710)$ state. It also confirms existence of the $P_{11}(1860)$ state however there are two solutions which give very different widthes for this state.
- 2. The data on $\pi^+ p \to K^+ \Sigma^+$ confirm the $P_{33}(1600)$ and $P_{33}(1920)$ resonances.
- 3. The fit of new polarization observable I_c on $\gamma p \rightarrow \eta \pi^0 n$ confirms the solution published in Eur.Phys.J.A38:173-186,2008: $D_{33}(1980)$.
- 4. The combined analysis of pion- and photoproduction reactions confirms the $P_{13}(1900)$ state. Moreover, there is a strong indication for a double pole structure in this region.
- 5. The new data on the $\gamma p \to K\Lambda$ reaction (CLAS: $d\Sigma/d\Omega$, P; GRAAL: O_x , O_z , T shows an indication for the third S_{11} state with mass 1890 ± 10 MeV and width 90 ± 10 MeV.

Problem: how to compare our results with other analyses?

For example with Breit-Wigner parameters given in PDG.

We construct the following amplitude:

$$A_{ij}^{BW} = \frac{g_i^{BW} g_j^{BW}}{M_{BW}^2 - s - i\beta \sum_i g_i^2 \rho_i}$$

where M_{BW} and β are fitted to reconstruct pole position and g_i^{BW} to reconstruct residues in the pole.

As a cross-check: the procedure works very well for the relativistic Breit-Wigner amplitude

$$(g_i^{BW})^2 \sim \beta g_i^2$$

and width can be estimated as:

$$M_{BW}\Gamma_{tot}^{BW} = Im(i\beta\sum_{i}g_{i}^{2}\rho_{i})$$

S11-wave transition amplitudes

P11-wave transition amplitudes

Multipoles for the single π^0 and η production. Red - real part, Blue - imaginary part. Solid curves is our solution, dashed curves - SAID solution, dotted - MAID 2009.

Multipoles for the $K\Lambda$ and $K\Sigma$ final states. Red - real part, Blue - imaginary part. Solid

N/D based analysis of the data

In the case of resonance contributions only we have factorization and Bethe-Salpeter equation can be easily solved:

$$A_{jm} = A_{jk} \sum_{\alpha} B_{\alpha}^{km}(s) \frac{1}{M_m - s} + \frac{\delta_{jm}}{M_j^2 - s} \qquad B_{\alpha}^{km}(s) = \int_{4m_j^2}^{\infty} \frac{ds'}{\pi} \frac{g_{\alpha}^{(k)}(s')\rho(s')g_{\alpha}^{(m)}(s')}{s' - s - i0}$$
$$\hat{A} = \hat{\kappa}(I - \hat{B}\hat{\kappa})^{-1} \qquad \kappa_{ij} = \frac{\delta_{ij}}{M_i^2 - s} \qquad B^{ij} = \sum_{\alpha} B_{\alpha}^{km}(s)$$

For non-resonant contributions: there is no factorization and the amplitude can have a complicated energy dependence. However in majority of K-matrix analysis the nonresonant contributions are constant or have a simple energy dependence. Non-factorization can be taken into account by introduction of two transitions with fixed left and right vertices.

Parameterization of P_{13} wave: 3 resonances 8 channels, 4 non-resonant contributions $\pi N \to \pi N, \pi N \to \eta N, \pi N \to K\Sigma, \pi N \to \Delta \pi$. It corresponds to 8×8 channel K-matrix and 5×5 N/D-matrix.

In many cases (fixed form-factor or subtraction procedure) the real part can be calculated in advance (for S-wave):

$$B(s) = ReB(M^2) + \frac{g^2}{\pi} [\rho(s) \ln \frac{1 - \rho(s)}{1 + \rho(s)} - \rho(M^2) \ln \frac{1 - \rho(M^2)}{1 + \rho(M^2)}] + i\rho(s)g^2$$

The P-vector approach is strait forward:

$$A_{ab} = \sum_{ij} a^{j} (b) P_{b} = \sum_{ij} a^{j} (b)$$

- 1. This approach satisfies analyticity and two body unitarity conditions. It takes left-hand side singularities into account.
- 2. The approach is suitable for the analysis of high statistic data in combined analysis of many reactions.
- 3. However: a treatment of the real part for interfering resonances is model dependent.

The amplitude for t-channel exchange:

$$A = g_1(t)g_2(t)R(\xi,\nu,t) = g_1(t)g_2(t)\frac{1+\xi exp(-i\pi\alpha(t))}{\sin(\pi\alpha(t))} \quad \frac{\nu}{\nu_0} \quad \alpha^{\alpha(t)} \quad \nu = \frac{1}{2}(s-u).$$

Here $\alpha(t)$ is Reggion trajectory, and ξ is its signature:

$$R(+,\nu,t) = \frac{e^{-i\frac{\pi}{2}\alpha(t)}}{\sin(\frac{\pi}{2}\alpha(t))\Gamma \frac{\alpha(t)}{2}} \frac{\nu}{\nu_0} \frac{\alpha(t)}{\nu},$$

$$R(-,\nu,t) = \frac{ie^{-i\frac{\pi}{2}\alpha(t)}}{\cos(\frac{\pi}{2}\alpha(t))\Gamma \frac{\alpha(t)}{2} + \frac{1}{2}} \frac{\nu}{\nu_0} \frac{\alpha(t)}{\nu}$$